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Abstract 
Volatility modeling is important in quantitative risk management because it reflects the dynamics of 
return changes. The GARCH model is widely used for this purpose. However, it cannot capture the 
asymmetric nature of volatility. This study proposes the Modified Asymmetrical GARCH (MAGARCH) 
model. It accommodates heteroskedasticity and captures asymmetry through an indicator function. 
The aim of this research is to evaluate the ability of MAGARCH to predict the risk of returns for two 
stocks, ISAT and TLKM. The study also examines the role of inter-asset dependence in determining 
financial risk measures. To achieve this, the asymmetric GARCH model is integrated with a Copula 
approach. This allows the dependence structure between assets to be depicted more accurately. The 
results show that applying Copula to the asymmetric GARCH model, including MAGARCH, improves 
the accuracy of risk measure estimates. This improvement is most evident in Value-at-Risk. The 
findings highlight the importance of using flexible volatility models and nonlinear dependence 
approaches in measuring and forecasting portfolio risk. Therefore, the proposed model can serve as 
an effective strategy for supporting financial risk management decisions. 
Keywords: Asymmetric volatility, Copula, GARCH, modified model, two assets. 

 
Abstrak 
Pemodelan volatilitas penting dalam manajemen risiko kuantitatif karena mencerminkan 
dinamika perubahan return. Model GARCH banyak digunakan untuk tujuan ini. Namun model 
tersebut tidak mampu menangkap sifat asimetris volatilitas. Penelitian ini mengusulkan Modified 
Asymmetrical GARCH (MAGARCH). Model ini dapat mengakomodasi heteroskedastis sekaligus 
menangkap asimetri melalui fungsi indikator. Tujuan penelitian adalah mengevaluasi 
kemampuan MAGARCH dalam memprediksi risiko return saham dua aset, ISAT dan TLKM. 
Penelitian ini juga menelaah peran ketergantungan antar-aset dalam menentukan ukuran risiko 
keuangan. Untuk itu, model GARCH asimetris diintegrasikan dengan pendekatan Copula. Dengan 
cara ini, struktur ketergantungan antar-aset dapat digambarkan lebih akurat. Hasil penelitian 
menunjukkan bahwa penerapan Copula pada model GARCH asimetris termasuk MAGARCH 
meningkatkan akurasi estimasi ukuran risiko. Peningkatan ini paling nyata terlihat pada Value-
at-Risk. Temuan ini menegaskan pentingnya penggunaan model volatilitas fleksibel dan 
pendekatan dependensi nonlinier dalam pengukuran serta prediksi risiko portofolio. Dengan 
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demikian, model yang diusulkan dapat menjadi strategi efektif untuk mendukung pengambilan 
keputusan manajemen risiko keuangan. 

   Kata kunci: Copula, dua aset, GARCH, model modifikasi, volatilitas asimetris. 

I. Pendahuluan 

Pengukuran risiko merupakan aspek fundamental dalam keuangan modern karena 
berfungsi mengantisipasi potensi kerugian tak terduga akibat fluktuasi nilai aset. Salah satu 
ukuran risiko yang paling sederhana adalah volatilitas, yaitu besarnya perubahan return dalam 
periode tertentu [1][2]. Ukuran lain yang banyak digunakan adalah Value-at-Risk (VaR), yang 
mendefinisikan kerugian maksimum yang dapat ditoleransi pada tingkat kepercayaan tertentu 
[3][4]. Namun, VaR tidak memenuhi sifat sub-aditif sehingga dapat menimbulkan masalah 
dalam diversifikasi portofolio [5]. Untuk itu, dikembangkan ukuran risiko alternatif seperti 
Expected Shortfall (ES) yang mampu mengatasi keterbatasan VaR dengan memperhitungkan 
nilai rata-rata kerugian di luar VaR. Selain ukuran risiko, pemilihan distribusi return juga 
berpengaruh signifikan terhadap hasil prediksi [6]. Asumsi distribusi simetris sering kali 
menghasilkan estimasi risiko yang terlalu rendah [7]. Oleh karena itu, distribusi asimetris 
dianggap lebih sesuai dalam memodelkan data keuangan yang cenderung skewed dan heavy-
tailed [8]. Sifat asimetris ini penting untuk menangkap karakteristik empiris return dan 
volatilitas [9]. 

Pemodelan volatilitas memiliki peran sentral dalam manajemen risiko kuantitatif [10]. 
Volatilitas yang bersifat time-varying [11] mencerminkan dinamika pergerakan return yang 
dapat berubah seiring waktu. Selanjutnya, [12] dan [13] memperkenalkan model ARCH dan 
GARCH untuk menangkap sifat heteroskedastisitas pada data keuangan. Meski demikian, 
GARCH standar hanya menghasilkan respon simetris, yaitu perubahan volatilitas yang sama 
baik akibat return positif maupun negatif. Hal ini tidak sesuai dengan fenomena empiris bahwa 
volatilitas pasar meningkat lebih tajam akibat berita buruk dibanding berita baik [14][15]. 

Untuk menutupi keterbatasan tersebut, berbagai pengembangan model GARCH 
asimetris telah diusulkan, seperti GJR-GARCH [16], TGARCH [17], VSGARCH [18], dan ATGARCH 
[19]. Model-model ini menambahkan fungsi indikator biner yang membedakan dampak return 
positif dan negatif terhadap volatilitas. Sejalan dengan arah pengembangan tersebut, penelitian 
ini mengusulkan modifikasi berupa Modified Asymmetrical GARCH (MAGARCH), yaitu model 
GARCH dengan penambahan fungsi indikator dan parameter tambahan untuk menangkap sifat 
asimetris secara lebih fleksibel. 

Lebih lanjut, penelitian ini berfokus pada dua aset, yang analisis risikonya lebih 
kompleks dibanding satu aset karena melibatkan ketergantungan antar-return. Dalam konteks 
ini, pendekatan tradisional berbasis korelasi linier sering kali tidak memadai. Salah satu metode 
yang lebih tepat adalah Copula, yaitu fungsi distribusi gabungan dengan distribusi marginal 
uniform [0,1]. Dengan demikian, penelitian ini berupaya mengisi kesenjangan literatur melalui 
pengembangan model MAGARCH berbasis Copula untuk memprediksi ukuran risiko keuangan. 
Pendekatan ini diharapkan dapat memberikan hasil yang lebih realistis dalam pengukuran 
risiko, khususnya ketika sifat asimetris dan ketergantungan antar-aset menjadi faktor yang 
dominan. 

II. Metode Penelitian 

2.1 Model GARCH Asimetris yang Dimodifikasi 

Model Modified Asymmetrical GARCH (MAGARCH) merupakan modifikasi dari model 
GARCH dengan penambahan fungsi indikator serta beberapa parameter pada model. 
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Misalkan {𝑅𝑡 , 𝑡 ≥ 0} merepresentasikan proses stokastik dari return suatu aset pada waktu 
𝑡. Maka {𝑅𝑡 , 𝑡 ≥ 0} mengikuti model MAGARCH(1,1) jika  

𝑅𝑡 = √𝜎𝑡
2𝜀𝑡 

(1) 
𝜎𝑡

2 = 𝛼(1) + 𝛼(2)Ι𝑅𝑡−1<𝑟
+ (𝛾(1) + 𝛾(2)Ι𝑅𝑡−1<𝑟

)𝑅𝑡−1
2 + (𝛽(1) + 𝛽(2)Ι𝑅𝑡−1<𝑟

)𝜎𝑡−1
2  

 

dengan Ι𝑅𝑡−1<𝑟
 adalah fungsi indikator yang bernilai 1 jika Ι𝑅𝑡−1<𝑟

< 𝜏, dan 0 jika sebaliknya. 

Agar varians bersyarat 𝜎𝑡
2 selalu positif, maka diperlukan kondisi berikut untuk setiap 

regime yaitu regime 0 (Ι𝑅𝑡−1<𝑟
= 0), 𝛼(1) > 0, 𝛾(1) ≥ 0, 𝛽(1) ≥ 0, dan regime 1 (Ι𝑅𝑡−1<𝑟

= 1) 

yaitu 𝛼(1) + 𝛼(2) > 0, 𝛾(1) + 𝛾(2) ≥ 0, 𝛽(1) + 𝛽(2) ≥ 0.  

Selanjutnya, untuk menjamin keberadaan momen kedua yang terbatas (stasioneritas 
lemah), diperlukan syarat yaitu 𝛾(1) + 𝛽(1)<1, (𝛾(1) + 𝛾(2)) + ( 𝛽(1) + 𝛽(2)) < 1. Kondisi ini 
memastikan bahwa baik intersep maupun koefisien bersifat non-negatif pada kedua regime, 
serta menjamin varians bersyarat selalu positif dan proses yang terbentuk tetap stasioner. 
Model MAGARCH(1,1) juga melibatkan variabel acak indikator 𝐼𝑅𝑡−1<𝜏. Untuk kepentingan 

analisis momen yang lebih tinggi, probabilitas indikator ini didefinisikan sebagai 

𝑃(Ι𝑅𝑡−1<𝑟
= 𝑗) = 𝜔𝑗 , 𝑗 = 0,1. (2) 

dengan 𝜔𝑗menyatakan peluang bahwa return pada periode sebelumnya berada pada regime 

ke-𝑗. Nilai 𝜔0 dan 𝜔1 memenuhi 𝜔0 + 𝜔1 = 1. 

 Selain struktur di atas, model MAGARCH(1,1) juga memiliki komponen ambang 
(threshold). Salah satu metode untuk menentukan nilai ambang adalah dengan 
memanfaatkan Mean Excess Function (MEF). Fungsi ini digunakan untuk menentukan 
ambang data ketika terdapat beberapa nilai observasi yang relatif jauh lebih besar daripada 
yang lain. Misalkan 𝑅𝑡 adalah variabel acak dengan ambang 𝑟, maka fungsi kelebihannya 
didefinisikan sebagai: 

(𝑅𝑡 − 𝑟)+ = {
𝑅𝑡 − 𝑟,   𝑅𝑡 ≥ 𝑟
0,    𝑅𝑡 < 𝑟

 

Sehingga MEF dapat dituliskan: 

𝑒(𝑟) = 𝐸(𝑅𝑡 − 𝑟 ∣ 𝑅𝑡 > 𝑟) =
∑ (𝑅𝑡 − 𝑟)+𝑛

𝑡=1

𝑁𝑟
, 

 

dengan 𝑁𝑟  adalah jumlah observasi yang lebih besar dari ambang 𝑟. 

Selanjutnya menurut [20], return dan volatilitas memiliki karakteristik khusus yang 
sering disebut sebagai sifat empiris. Karakteristik tersebut diperoleh dari kemampuan 
model dalam menangkap sebanyak mungkin sifat volatilitas, seperti kurtosis, fungsi 
autokorelasi, dan asimetri volatilitas. Model volatilitas yang baik adalah model yang mampu 
mengakomodasi sifat-sifat empiris tersebut. Kualitas model akan memengaruhi akurasi 
prediksi risiko yang dihasilkan. Dengan demikian, MAGARCH(1,1) dirancang untuk 
memenuhi sifat-sifat empiris tersebut sekaligus memberikan kerangka yang fleksibel dalam 
mengukur risiko. Pada penelitian ini akan dibahas mengenai sifat asimetris. 

Sifat asimetris pada dasarnya merujuk pada kondisi ketika nilai return positif dan 
negatif memiliki pengaruh yang berbeda terhadap volatilitas. Dalam literatur, [21] 
mengklasifikasikan sifat asimetris ini ke dalam tiga tipe: (i) tipe 1 (Leverage effect), terdapat 
korelasi negatif antara return saat ini dengan volatilitas masa depan. (ii) tipe 2, return 
negatif memberikan pengaruh yang lebih besar terhadap volatilitas dibanding return positif. 
(iii) tipe 3: return positif memberikan pengaruh yang lebih besar terhadap volatilitas 
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dibanding return negatif. Dengan kata lain, sifat asimetris menunjukkan bahwa arah return 
pada periode sebelumnya (baik positif maupun negatif) dapat menimbulkan besaran 
volatilitas yang berbeda di periode berikutnya. Untuk menilai apakah model MAGARCH(1,1) 
mampu mengakomodasi sifat asimetris, dapat digunakan korelasi antara return 𝜀𝑡dan 
volatilitas bersyarat 𝜎𝑡

2. Bentuk korelasi tersebut didefinisikan sebagai berikut: 

𝐶𝑜𝑟𝑟(𝜎𝑡
2, 𝜀𝑡−1) =

𝐶𝑜𝑣(𝜎𝑡
2,𝜀𝑡−1)

√(𝑉𝑎𝑟(𝜎𝑡
2)𝑉𝑎𝑟(𝜀𝑡−1)

=
𝐸(𝜎𝑡

2 𝜀𝑡−1)−𝐸(𝜎𝑡
2)𝐸(𝜀𝑡−1)

√(𝑉𝑎𝑟(𝜎𝑡
2)𝑉𝑎𝑟(𝜀𝑡−1)

 (5) 

 

Berdasarkan sifat distribusi, diperoleh bahwa 𝐸(𝜀𝑡−1) = 0 dan 𝐸(𝜀𝑡−1𝜎𝑡
2) = 0. 

Dengan demikian, nilai korelasi 𝑐𝑜𝑟𝑟(𝜎𝑡
2, 𝜀𝑡−1) adalah nol. Hal ini berarti bahwa dalam model 

MAGARCH(1,1), baik return positif maupun return negatif akan memberikan kontribusi 

yang sama terhadap volatilitas, sehingga model ini tidak dapat secara langsung menangkap 

sifat asimetris return. Namun, melalui pengujian numerik dengan data empiris, diperoleh 

nilai korelasi antara return dan volatilitas sebesar 0,1185. Nilai ini menunjukkan adanya 

hubungan positif antara return dan volatilitas. Akan tetapi, karena nilai probabilitas uji lebih 

besar dari 0,05, hubungan tersebut tidak signifikan secara statistik. Dengan demikian, dapat 

disimpulkan bahwa model MAGARCH(1,1) tidak dapat sepenuhnya mengakomodasi sifat 

asimetris, khususnya keterkaitan antara arah return dan volatilitas. 

 

 

 

 

 

 

 
 

Gambar 1.  Korelasi antara Return dan Volatilitas  
 

2.2 Agregasi Dua Aset dan Pengukuran Risiko dengan Model MAGARCH(1,1) 

Misalkan variabel acak X dan Y masing-masing merepresentasikan return dari aset 1 
dan aset 2. Proporsi investasi pada aset 1 dinyatakan dengan 𝑎, sedangkan pada aset 2 
dengan (1 − 𝑎). Dengan demikian, return agregat dari portofolio dua aset tersebut dapat 
dituliskan sebagai: 

𝑅𝑡
+ = 𝑎𝑋 + (1 − 𝑎)𝑌 (6) 

 

dengan 𝐸(𝑋) = 𝜇𝑋, 𝑉𝑎𝑟(𝑋) = 𝜎𝑋
2, 𝐸(𝑌) = 𝜇𝑌, 𝑉𝑎𝑟(𝑌) = 𝜎𝑌

2, 𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝜌𝑋𝑌. Nilai harapan 
(rerata) dari return agregat portofolio ini adalah: 

𝜇𝑅𝑡
+ = 𝐸(𝑎𝑋 + (1 − 𝑎)𝑌) = 𝑎𝜇𝑋 + (1 − 𝑎)𝜇𝑌 (7) 

Sedangkan variansinya dapat dituliskan sebagai: 

𝜎𝑅𝑡
+

2 = 𝑉𝑎𝑟(𝑎𝑋 + (1 − 𝑎)𝑌) = 𝑎2𝜎𝑋
2 + (1 − 𝑎)2𝜎𝑌

2 + 2𝑎(1 − 𝑎)𝜌𝑋𝑌𝜎𝑋𝜎𝑌 (8) 
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Berdasarkan Persamaan (7) dan (8), terlihat bahwa rata-rata 𝜇𝑅𝑡
+  dan variansi 

𝜎𝑅𝑡
+

2  sangat dipengaruhi oleh nilai proporsi 𝑎serta korelasi 𝜌𝑋𝑌.  Dengan demikian, penentuan 

bobot portofolio tidak hanya ditentukan oleh besarnya return yang diharapkan, tetapi juga 
oleh risiko agregat yang ditimbulkan. Risiko ini diukur menggunakan standar deviasi 𝜎𝑅𝑡

+ , di 

mana semakin besar nilai standar deviasi, semakin besar pula tingkat ketidakpastian 
(volatilitas) portofolio. Dalam praktiknya, pembentukan portofolio memerlukan pendekatan 
distribusi bersama (joint distribution function) dari return aset-aset yang digabungkan. Hal 
ini penting untuk memperoleh ukuran risiko yang lebih akurat. Penentuan distribusi 
bersama yang tepat harus mempertimbangkan fungsi distribusi marjinal dari masing-
masing aset serta struktur ketergantungan antar variabel acak. 

Jika 𝑋 dan 𝑌 merupakan variabel acak kontinu, maka fungsi distribusi bersama dapat 
dituliskan sebagai: 

𝐻𝑋𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≥ 𝑥, 𝑌 ≤ 𝑦) = ∫ ∫ ℎ𝑋𝑌(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑦

−∞

𝑥

−∞

 (9) 

dengan ℎ𝑋𝑌(𝑥, 𝑦) merupakan fungsi densitas probabilitas bivariat dari 𝑋 dan 𝑌. Dalam 
konteks agregasi return, distribusi bersama ini memungkinkan kita untuk membentuk 
distribusi portofolio secara lebih komprehensif, dengan tetap memperhatikan sifat 
distribusi masing-masing aset serta keterkaitannya. Dengan demikian, analisis risiko 
portofolio menjadi lebih akurat dibandingkan jika hanya mengandalkan distribusi marjinal 
secara terpisah. 

𝑃(𝑅𝑡
+ ≤ 𝑟𝑡

+) = 𝑃(𝑎𝑋 + (1 − 𝑎)𝑌 ≤ 𝑟𝑡
+) = ∫ ∫ ℎ𝑋𝑌(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑟𝑡
+

𝑎 −
(1−𝑎)

𝑎 𝑦

−∞

∞

−∞

 
(10) 

Misalkan 𝑅𝑡 adalah suatu proses stokastik yang menyatakan return dari aset 1 dan 2. 
Maka, 𝑅𝑡mengikuti suatu distribusi tertentu dengan parameter vektor 𝜃. Untuk 
memprediksi return pada waktu 𝑡 + 1 dengan tingkat keyakinan (1 − 𝛼), persamaan 
probabilitasnya adalah: 

𝑃(𝑅𝑡+1 ≤ 𝑉𝑎𝑅𝑡+1(𝑅𝑡 ∣ 𝜇𝑡 , 𝜎𝑡)) = 1 − 𝛼 (11) 

Sehingga, nilai Value at Risk (VaR) pada tingkat keyakinan (1 − 𝛼)dapat dituliskan sebagai 

𝑉𝑎𝑅𝑡+1
1−𝛼(𝑅𝑡) = 𝜇𝑡 + Φ−1(1 − 𝛼) 𝜎̂𝑡+1  (12) 

dengan Φ−1(1 − 𝛼) menyatakan kuantil distribusi normal standar. Apabila residual 
𝑢𝑡 berdistribusi normal, maka prediksi VaR pada saat 𝑡 + 1 dengan tingkat keyakinan (1 −
𝛼) menggunakan model MAGARCH(1,1) dapat dinyatakan sebagai: 

𝑉𝑎𝑅𝑡+1
1−𝛼(𝑅𝑡) = 𝜇̂ + Φ̂(1 − 𝛼) 𝜎̂𝑡+1 (13) 

dengan 𝜇̂ adalah rata-rata return, 𝜎̂𝑡+1 adalah volatilitas bersyarat, dan Φ̂(1 − 𝛼) adalah 
kuantil distribusi normal standar. Selain VaR, terdapat pula ukuran risiko lain yaitu Expected 
Shortfall (ES). ES didefinisikan sebagai nilai ekspektasi dari return pada saat kerugian 
melampaui nilai VaR. Dengan kata lain, ES memberikan informasi mengenai besarnya 
kerugian rata-rata yang terjadi pada kondisi tail risk. Secara matematis, ES dapat dituliskan 
sebagai: 

𝐸𝑆𝑡+1
1−𝛼(𝑅𝑡) = 𝐸[−𝑅𝑡+1 ∣ 𝑅𝑡+1 ≤ 𝑉𝑎𝑅𝑡+1

1−𝛼(𝑅𝑡)] =
1

𝛼
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑉𝑎𝑅𝑡+1
1−𝛼

−∞

 (14) 
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Prediksi ES untuk distribusi normal  dengan 𝜙(⋅) adalah fungsi densitas distribusi normal 
standar [22] dapat dinyatakan sebagai: 

𝐸𝑆𝑡+1
1−𝛼 = 𝜇̂ + 𝜎̂

𝜙(Φ−1(1 − 𝛼))

𝛼
 (15) 

Dalam banyak kasus, asumsi normal tidak realistis karena data return keuangan 
sering menunjukkan fat tails. Oleh karena itu, distribusi Student-𝑡 sering digunakan. Jika 
residual mengikuti distribusi 𝑡 dengan derajat kebebasan 𝜈, maka VaR pada tingkat 
keyakinan (1 − 𝛼) dapat ditulis sebagai: 

𝑉𝑎𝑅𝑡+1
1−𝛼(𝑅𝑡) = 𝜇𝑡 + 𝑡𝜈

−1(1 − 𝛼) 𝜎̂𝑡+1 (16) 

dengan 𝑡𝜈
−1(1 − 𝛼) adalah kuantil distribusi Student-𝑡 dengan 𝜈 derajat kebebasan. 

Selanjutnya, Expected Shortfall (ES) untuk distribusi Student-𝑡 dengan 𝑓𝑡𝜈
(⋅) adalah fungsi 

kepadatan distribusi Student-𝑡 dapat dinyatakan sebagai [22]: 

𝐸𝑆𝑡+1
1−𝛼(𝑅𝑡) = 𝜇𝑡 + 𝜎̂𝑡+1 ⋅

𝑓𝑡𝜈
(𝑡𝜈

−1(1 − 𝛼))

𝛼
⋅

𝜈 + (𝑡𝜈
−1(1 − 𝛼))2

𝜈 − 1
 (17) 

 

2.3 Copula 

Copula merupakan suatu distribusi bivariat dengan marginal Uniform [0,1], yang 
berfungsi untuk menghubungkan dua fungsi distribusi dari variabel acak. Misalkan 𝑋 dan 
𝑌 adalah variabel acak kontinu dengan fungsi distribusi 𝐹𝑋 dan 𝐹𝑌. Maka, sebuah fungsi 
distribusi dengan marginal Uniform [0,1] yang menghubungkan 𝑋 dan 𝑌 disebut sebagai 
copula dari 𝑋 dan 𝑌 apabila: 

𝐻𝑋𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) (18) 

Sebagai sebuah fungsi distribusi bivariat, copula memiliki sifat-sifat bawaan dari fungsi 
distribusi bivariat, seperti 2-increasing dan grounded. Misalkan 𝑈 dan 𝑉 adalah dua variabel 
acak dengan sebuah copula 𝐶. Variabel acak 𝑈 dan 𝑉 juga memiliki fungsi probabilitas 
bivariat yang dikenal sebagai fungsi kerapatan copula (copula density function), yang 
didefinisikan sebagai: 

𝑐(𝑢, 𝑣) =
∂𝐶(𝑢, 𝑣)

∂𝑢 ∂𝑣
 (19) 

Apabila copula 𝐶 diketahui, serta fungsi invers 𝐹𝑋
−1 dan 𝐹𝑌

−1 ada, maka fungsi 
distribusi bivariat  𝐻𝑋𝑌  dapat dinyatakan sebagai: 

𝐶(𝑢, 𝑣) = 𝐹𝑋𝑌(𝐹𝑋
−1(𝑢), 𝐹𝑌

−1(𝑣)) (20) 

Sementara itu, fungsi densitas probabilitas bersama (joint probability density function) dari 
distribusi bivariat 𝐻𝑋𝑌 adalah sebagai berikut: 

𝑓𝑋𝑌 = 𝑐(𝑢, 𝑣)𝑓𝑋(𝑥)𝑓𝑌(𝑦) (21) 

Dengan demikian, copula menghubungkan distribusi marginal 𝐹𝑋 dan 𝐹𝑌 dengan distribusi 
bersama 𝐻𝑋𝑌 melalui fungsi kerapatan 𝑐(𝑢, 𝑣). Lebih lanjut, copula dapat dikategorikan ke 
dalam beberapa jenis, termasuk copula fundamental, copula implisit, dan copula eksplisit. 
Studi ini meneliti copula implisit, terutama copula t dan copula Clayton. Copula t dipilih 
karena mampu menangkap ketergantungan ekor tebal, baik positif maupun negatif, yang 
umum terjadi pada return saham. Copula Clayton dipilih karena mampu memodelkan 
ketergantungan pada bagian bawah distribusi, sehingga cocok untuk menggambarkan risiko 
ekstrem saat kerugian. Dengan menggunakan kedua copula ini, struktur ketergantungan 
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non-linear antar aset dapat dimodelkan secara lebih komprehensif dibandingkan copula 
sederhana atau normal. 

2.3.1 Copula t 

Copula t dibentuk berdasarkan distribusi bivariat t standar dengan derajat kebebasan 
𝜈 dan koefisien korelasi 𝜌. Copula t dapat didefinisikan sebagai 

𝐶𝑡(𝑢, 𝑣; 𝜌, 𝜈)   = 𝑡𝜈,𝜌(𝑡𝜈
−1(𝑢), 𝑡𝜈

−1(𝑣)

= ∫
𝑡𝜈

−1(𝑢)

−∞

∫
𝑡𝜈

−1(𝑣)

−∞

1

2𝜋√1 − 𝜌2
(1 +

𝑠2 − 2𝜌𝑠𝑡 + 𝑡2

𝜈(1 − 𝜌2)
)−

𝜈+2
2 𝑑𝑠 𝑑𝑡 

(22) 

dengan 𝑡𝜈
−1(𝑢) adalah invers dari fungsi distribusi t standar dengan derajat kebebasan 𝜈, dan 

𝜌 ∈ [−1,1]. Copula t dapat mengakomodasi ketergantungan positif maupun negatif. 
Perbedaan utama copula t dengan copula normal terletak pada ketebalan ekor (tail 
thickness). Faktor yang memengaruhi ketebalan ekor adalah nilai 𝜈. Semakin kecil nilai 𝜈, 
semakin tebal ekor distribusi tersebut. Sebaliknya, jika nilai 𝜈 mendekati tak hingga, maka 
copula t dapat dimodelkan mendekati copula normal. Sementara itu, densitas copula t 
diberikan oleh: 

𝑐𝑡(𝑢, 𝑣; 𝜌, 𝜈) =
𝜈

2𝜋√1 − 𝜌2
(
Γ(

𝜈 + 1
2

)

Γ(
𝜈
2

)√𝜈𝜋
)2(1 +

𝑠2

𝜈
)−

𝜈+1
2 (1 +

𝑡2

𝜈
)−

𝜈+1
2 (1 +

𝑠2 − 2𝜌𝑠𝑡 + 𝑡2

𝜈(1 − 𝜌2)
)

𝜈+2
2  (23) 

 

dengan 𝑠 = 𝑡𝜈
−1(𝑢) dan 𝑡 = 𝑡𝜈

−1(𝑣). Bagian ini menunjukkan bagaimana copula t mampu 
menangkap ketergantungan dengan ekor tebal (fat tails) yang sering muncul pada data 
keuangan. Visualisasi densitas copula t biasanya dilakukan untuk berbagai nilai 𝜌 dan 𝜈, 
sehingga terlihat perbedaan struktur dependensi pada ekor distribusi. 

 

 

 

 

 

 

 
 
 
 
 

 
Gambar 2.  Fungsi Densitas Copula-t 

 

2.3.2 Copula Clayton 

Copula Clayton adalah copula yang hanya mampu memodelkan ketergantungan 
positif antara dua peubah acak. Copula Clayton dicirikan oleh adanya ketergantungan yang 
kuat pada nilai kecil (bagian bawah distribusi), tetapi lemah dalam memodelkan 
ketergantungan pada nilai besar. Selain itu, copula Clayton memiliki fungsi generator 
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𝜙(𝑡) yang memenuhi syarat 𝜙(1) = 0 dan 𝜙(𝑡) merupakan fungsi monoton menurun yang 
didefinisikan untuk setiap 𝑡 ∈ (0,1].  Copula Clayton didefinisikan sebagai: 

𝐶(𝑢, 𝑣; 𝜃) = (𝑢−𝜃 + 𝑣−𝜃 − 1)−
1
𝜃 

(24) 

 

Sedangkan fungsi densitas dari copula Clayton dapat dituliskan sebagai: 

𝑐(𝑢, 𝑣; 𝜃) = (𝜃 + 1)(𝑢𝑣)−(𝜃+1)(𝑢−𝜃 + 𝑣−𝜃 − 1)−
2𝜃+1

𝜃  
(25) 

 
Berikutnya biasanya ditampilkan plot dari densitas copula Clayton untuk berbagai nilai 
parameter 𝜃. 
 

 

 

 

 

 

 

 

 

 

Gambar 3. Fungsi Densitas Copula Clayton 

 

2.4 Estimasi Parameter Model 

Dalam memprediksi perubahan volatilitas di masa depan menggunakan model, 

diperlukan nilai parameter yang akurat. Pada penelitian ini, parameter MAGARCH(1,1) 

diestimasi menggunakan metode Quasi Maximum Likelihood (QML) dengan algoritma BHHH 

(Berndt-Hall-Hall-Hausman). Metode QML dipilih karena bersifat robust terhadap 

pelanggaran asumsi normalitas residual. Prosedur estimasi dilakukan dengan langkah-

langkah berikut. Pertama, ditentukan fungsi likelihood dari model MAGARCH(1,1) 

berdasarkan data return. Kedua, likelihood dimaksimalkan menggunakan algoritma BHHH 

untuk memperoleh estimasi parameter model. Estimasi dilakukan untuk setiap regime 

karena model MAGARCH memiliki dua regime yang ditentukan oleh fungsi indikator. Nilai 

parameter yang diperoleh kemudian digunakan dalam prediksi volatilitas dan perhitungan 

risiko keuangan. 

2.4 Evaluasi Model 

Prediksi VaR dievaluasi melalui backtesting formal menggunakan proporsi Correct 

VaR. Correct VaR membandingkan jumlah kejadian kerugian yang lebih kecil dari VaR 

dengan total jumlah data yang diamati. Misalkan 𝐼𝑡+1 adalah variabel acak biner yang 

mengikuti distribusi Bernoulli dengan probabilitas keberhasilan 𝑃(𝑟𝑡+1 ≥ 𝑉𝑎𝑅𝑡+1
1−𝛼(𝑅𝑡)). 

Ketepatan VaR dapat dinyatakan sebagai: 

Correct VaR =
∑ 𝐼𝑡+1

𝑁
𝑖=1

𝑁
≈ 1 − 𝛼 

 

(26) 
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Selain itu, evaluasi dapat dilakukan dengan backtesting out-of-sample, membandingkan VaR 

yang diprediksi dengan kerugian aktual yang terjadi. Evaluasi ini memastikan bahwa model 

MAGARCH, termasuk integrasi dengan Copula, tidak hanya sesuai dengan data historis tetapi 

juga memberikan estimasi risiko yang akurat dalam kondisi pasar nyata. Selain VaR, ukuran 

risiko tambahan seperti Expected Shortfall (ES) dapat digunakan untuk mengukur potensi 

kerugian pada ekor distribusi, sehingga prediksi risiko portofolio menjadi lebih 

komprehensif. 

III. Hasil dan Pembahasan 

3.1 Data 

Data yang digunakan dalam penelitian ini adalah data return dari harga saham ISAT 
dan TLKM (sumber: www.yahoofinance.com) untuk periode 2 Maret 2020 hingga 2 Maret 

2022. Return didefinisikan sebagai 𝑅𝑖,𝑡 = ln(𝑃𝑖,𝑡 𝑃𝑖,𝑡−1⁄ ) dengan 𝑃𝑖,𝑡menyatakan harga saham 

ke-𝑖 pada waktu 𝑡, dan 𝑖 = 1,2. Gambar berikut menyajikan pergerakan harga saham ISAT 
dan TLKM beserta data return-nya. 

  

  

Gambar 4. Harga dan Return ISAT serta TLKM 

 

Tabel 1. Statistik Deskriptif 

No Statistik 
Saham 

ISAT TLKM 

1 Jumlah Data 531 531  

2 Rerata −0, 0012 0,0002 

3 Variansi 0,0015 0,0005 

4 Skewnes −0,3053 −0,8155 

5 Kurtosis 9,0702 6,8853 

 

http://www.yahoofinance.com/
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Berdasarkan Gambar 5 terlihat bahwa grafik return memiliki rentang yang lebih kecil 
dibandingkan dengan grafik harga. Hal ini menyebabkan return lebih mudah diprediksi di 
masa mendatang dan cenderung lebih stasioner. Karakteristik tersebut dapat diamati dari 
plot nilai rata-rata dan varians yang relatif konstan sepanjang waktu. Oleh karena itu, data 
runtun waktu yang digunakan dalam penelitian ini adalah return dari harga saham. 
Selanjutnya, data return 𝑅𝑖,𝑡 pada awalnya diasumsikan mengikuti distribusi normal. 
Namun, asumsi ini tidak sepenuhnya tepat karena nilai kurtosis 𝑅𝑖,𝑡 melebihi kurtosis 
distribusi normal. Kondisi tersebut menunjukkan bahwa distribusi 𝑅𝑖,𝑡 memiliki ekor yang 
lebih tebal (thick tail), sehingga probabilitas munculnya nilai ekstrem cukup tinggi. Hasil 
analisis statistik deskriptif memperlihatkan bahwa nilai kurtosis komponen agregasi lebih 
besar dari tiga, yang mengindikasikan bahwa data pembentuk komponen agregasi 
mengikuti distribusi dengan ekor tebal.  

 

3.2 Prediksi Pengukuran Risiko Berbasis Copula 

Prediksi Value at Risk (VaR) dan Expected Shortfall (ES) dari return kedua saham 
ditentukan dengan menggunakan model MAGARCH (normal) dan MAGARCH (t). Prediksi 
VaR dan ES pada tingkat keyakinan 𝛼 = 99%, 𝛼 = 95%, dan 𝛼 = 90%ditampilkan pada tabel 
berikut. 

Tabel 2. Prediksi VaR Saham ISAT dan TLKM 

No Saham Persentase 
Distribusi Normal Distribusi t 

𝑉𝑎𝑅𝑁 𝐸𝑆𝑁 𝑉𝑎𝑅𝑡 𝐸𝑆𝑡  

1 ISAT 

99% 0.0311 0.0356 0.0370 0.0196 

95% 0.0220 0.0275 0.0237 0.0196 

90% 0.0171 0.0234 0.0178 0.0185 

2 TLKM 

99% 0.0255 0.0293 0.0299 0.0158 

95% 0.0181 0.0226 0.0192 0.0159 

90% 0.0141 0.0193 0.0144 0.0150 

      

 

 

 

 

 

 

 

 

 

 

 

Gambar 6. Prediksi VaR Saham ISAT dan TLKM 
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Berdasarkan Tabel 2 dan Gambar 6 dapat dilihat bahwa nilai prediksi 𝑉𝑎𝑅𝑡 memiliki nilai 
yang lebih tinggi dibandingkan dengan 𝑉𝑎𝑅𝑁, sedangkan nilai prediksi 𝐸𝑆𝑁 lebih tinggi 
dibandingkan dengan 𝐸𝑆𝑡 . Hal ini menunjukkan bahwa nilai risiko yang dihasilkan dari data 
agregasi yang berdistribusi-t tidak selalu lebih besar dibandingkan dengan distribusi 
normal. Selanjutnya, tingkat akurasi dalam memprediksi nilai risiko dapat diketahui melalui 
proporsi kebenaran VaR (correct VaR proportion). Metode ini menilai akurasi VaR dengan 
cara melihat proporsi kerugian yang lebih kecil atau sama dengan nilai prediksi VaR. 
Proporsi kebenaran VaR untuk kedua saham tersebut ditunjukkan pada tabel berikut. 

Tabel 3. Correct VaR dan ES 

No Saham Persentase 

Distribusi Normal Distribusi t 

Correct 
𝑉𝑎𝑅𝑁 

Correct  
𝐸𝑆𝑁 

Correct 
𝑉𝑎𝑅𝑡 

Correct  
𝐸𝑆𝑡  

1 ISAT 

99% 88.0907 99.6219 90.7373 79.3951 

95% 81.6635 99.8110 82.4197 79.3951 

90% 77.5047 99.8110 77.6938 78.2609 

2 TLKM 

99% 92.8166 99.8903 94.8960 84.8771 

95% 87.1456 99.8903 88.0907 84.8771 

90% 83.1758 99.8903 83.7429 84.3100 

 

Apabila perbedaan antara VaR dan ES yang benar (correct VaR dan ES) berada pada 
tingkat signifikansi yang paling kecil, maka model tersebut dapat dikatakan memiliki kinerja 
yang baik dalam memprediksi nilai di masa depan. Pada Tabel 3, perbedaan terkecil antara 
nilai correct VaR dan ES dengan tingkat probabilitas yang diberikan untuk kedua saham 
terdapat pada ESN. Hal ini menunjukkan bahwa model MAGARCH(normal) merupakan 
model yang paling sesuai untuk memodelkan saham ISAT dan TLKM, karena perbedaan 
antara VaR dan ES yang benar pada tingkat signifikansi tersebut adalah yang paling kecil. 

Selanjutnya, VaR dan ES akan diprediksi dengan menggunakan konsep rata-rata, 
yakni dengan menghasilkan data berdasarkan hasil estimasi parameter dari keluarga copula, 
khususnya copula t dan copula Clayton. Tabel berikut menampilkan hasil prediksi VaR dan 
ES untuk data agregasi. Dapat dilihat bahwa nilai prediksi VaRN 90% untuk copula t dan 
copula Clayton pada saham ISAT dan TLKM memiliki nilai terkecil. Sementara itu, untuk  
𝐸𝑆90%

𝑁  pada saham TLKM, copula t dan copula Clayton juga menunjukkan nilai yang terkecil. 
 

Tabel 4. Prediksi Risiko dengan Pendekatan Copula 

No Saham 
Copula t Copula Clayton 

𝑉𝑎𝑅99%
𝑁  𝑉𝑎𝑅95%

𝑁  𝑉𝑎𝑅90%
𝑁  𝑉𝑎𝑅99%

𝑁  𝑉𝑎𝑅95%
𝑁  𝑉𝑎𝑅90%

𝑁  

1 ISAT 

0.0802 0.1656 0.9280 0.7604 0.1969 1.1221 

𝐸𝑆99%
𝑁  𝐸𝑆95%

𝑁  𝐸𝑆90%
𝑁  𝐸𝑆99%

𝑁  𝐸𝑆95%
𝑁  𝐸𝑆90%

𝑁  

0.7604 1.4315 5.9354 0.8956 1.6852 6.9535 

2 TLKM 

𝑉𝑎𝑅99%
𝑁  𝑉𝑎𝑅95%

𝑁  𝑉𝑎𝑅90%
𝑁  𝑉𝑎𝑅99%

𝑁  𝑉𝑎𝑅95%
𝑁  𝑉𝑎𝑅90%

𝑁  

0.0300 0.0421 0.0779 0.0309 0.0440 0.0845 

𝐸𝑆99%
𝑁  𝐸𝑆95%

𝑁  𝐸𝑆90%
𝑁  𝐸𝑆99%

𝑁  𝐸𝑆95%
𝑁  𝐸𝑆90%

𝑁  

0.0506 0.0664 0.1153 0.0538 0.0715 0.1267 



Journal of Science and Technology, Volume 6(2), 2025. Halaman 75-88 

  

 
 

86 

 

3.3 Pembahasan 

Analisis deskriptif menunjukkan bahwa return saham ISAT dan TLKM memiliki 
distribusi dengan ekor tebal, ditunjukkan oleh nilai kurtosis yang lebih besar dari tiga. Hal 
ini mengindikasikan adanya peluang munculnya nilai ekstrem sehingga asumsi distribusi 
normal kurang sepenuhnya tepat. Selain itu, ketergantungan antar harga, return, dan 
kuadrat return juga relatif kuat, dengan nilai ρ masing-masing sebesar 0.4684; 0.4345; dan 
0.2081. Harga saham menunjukkan korelasi tertinggi, sedangkan return memiliki 
ketergantungan yang lebih lemah. Temuan ini menegaskan pentingnya pemodelan risiko 
yang memperhatikan dinamika volatilitas serta struktur ketergantungan. 

Hasil estimasi menunjukkan bahwa model MAGARCH(normal) lebih unggul 
dibandingkan distribusi-t karena menghasilkan selisih terkecil antara VaR dan ES pada 
berbagai tingkat signifikansi. Meskipun secara teoretis MAGARCH tidak sepenuhnya 
asimetris, model ini dipilih karena mampu mengakomodasi heteroskedastisitas dan 
sebagian sifat asimetris return melalui fungsi indikator. Integrasi pendekatan copula, 
khususnya copula t dan copula Clayton, terbukti efektif dalam menangkap ketergantungan 
non-linear antar return saham. Prediksi VaR dan ES berbasis copula memberikan nilai risiko 
yang lebih realistis, terutama pada tingkat keyakinan 90%. Meskipun demikian, analisis 
sensitivitas terhadap variasi parameter model belum dilakukan dan dapat menjadi langkah 
penting untuk menilai robustitas prediksi risiko. Secara teori, pendekatan MAGARCH dan 
copula dapat diperluas untuk portofolio multi-aset, meskipun hal ini membutuhkan estimasi 
parameter yang lebih kompleks dan pemilihan copula multivariat. Selain itu, penggunaan 
copula dinamis yang memungkinkan parameter ketergantungan berubah seiring waktu 
dapat menjadi pengembangan lanjutan agar model lebih responsif terhadap perubahan 
pasar. Dengan demikian, kombinasi model MAGARCH(normal) dan copula tetap menjadi 
pendekatan yang akurat dan komprehensif dalam mengukur risiko portofolio saham ISAT 
dan TLKM, sambil membuka peluang pengembangan untuk analisis portofolio yang lebih 
luas dan adaptif. 

Kelebihan penelitian ini terletak pada penggunaan gabungan model GARCH 
multivariat dan copula yang mampu mengakomodasi volatilitas dan struktur 
ketergantungan secara lebih detail. Namun, keterbatasannya adalah fokus yang hanya pada 
dua saham dan rentang data tertentu, sehingga generalisasi hasil perlu dilakukan dengan 
hati-hati. Pengembangan lebih lanjut dapat diarahkan pada penerapan model serupa pada 
portofolio yang lebih luas, periode data yang lebih panjang, serta eksplorasi copula lain 
untuk menguji konsistensi hasil. 

IV.  Kesimpulan 

Penelitian ini menunjukkan bahwa model MAGARCH(1,1) dengan asumsi distribusi 

normal memberikan prediksi risiko return saham ISAT dan TLKM yang lebih akurat 

dibandingkan distribusi-t. Keakuratan ini ditunjukkan oleh perbedaan terkecil antara nilai 

prediksi dan nilai correct VaR serta ES pada berbagai tingkat signifikansi terutama pada 

tingkat keyakinan 90%. Integrasi dengan pendekatan copula, khususnya copula t dan copula 

Clayton, terbukti efektif dalam menangkap ketergantungan non-linear antar return saham. 

Prediksi VaR dan ES berbasis copula memberikan nilai risiko yang lebih realistis, sehingga 

kombinasi model MAGARCH(normal) dan copula merupakan pendekatan yang 

komprehensif untuk mengukur risiko portofolio. Kelebihan penelitian ini terletak pada 

kemampuan model untuk memotret volatilitas dan struktur ketergantungan secara lebih 

rinci. Namun, penelitian ini memiliki keterbatasan karena hanya menggunakan dua saham 
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dan periode data tertentu, sehingga generalisasi hasil perlu diuji lebih lanjut. Pengembangan 

ke depan dapat diarahkan pada penerapan model serupa pada portofolio yang lebih luas, 

periode data yang lebih panjang, serta eksplorasi copula lain untuk menguji konsistensi hasil 

dan meningkatkan robustitas prediksi risiko. 
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